Cart (Loading....) | Create Account
Close category search window
 

Noncoherent sequence detection of continuous phase modulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Colavolpe, G. ; Dipt. di Ingegneria dell''Inf., Parma Univ., Italy ; Raheli, R.

In this paper, noncoherent sequence detection, proposed in a companion paper by Colavolpe and Raheli (see ibid. vol.47, no.9, p.1376-85, 1999), is extended to the case of continuous phase modulations (CPMs). The results in the companion paper on linear modulations with intersymbol interference (ISI) are used here because a CPM signal is mathematically equivalent to a sum of ISI-affected linearly modulated components, according to the Laurent decomposition. The proposed suboptimal detection schemes have a performance which approaches that of coherent detection with acceptable complexity, allow for time-varying phase models, and compare favorably with previously proposed solutions

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 9 )

Date of Publication:

Sep 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.