By Topic

Wide-band polarimetric radar inversion studies for vegetation layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. R. Cloude ; Appl. Electromagnetics, St. Andrews, UK ; J. Fortuny ; J. M. Lopez-Sanchez ; A. J. Sieber

The authors show how the entropy-alpha target decomposition scheme may be used for parametric inversion studies on random particle cloud models for vegetation layers. The decomposition is detailed first and then applied to a two-parameter model for backscatter from a random cloud of small anisotropic particles. The two main parameters used are the mean particle shape and the mean orientation angle of the cloud. An inversion algorithm is presented and applied to broad-band polarimetric radar data from the European Microwave Signature Laboratory (EMSL), Joint Research Center, Ispra, Italy. The results have been obtained from measurements of a fir tree and a ficus tree. They show a wavelength scale dependence of the shape and distribution of scatterers, which reflects the complex volume scattering nature of such problems. Moreover, the values and trends from these two trees as a function of the frequency are different, as expected from their physical structures. Consequently, this algorithm has the potential to be useful in the construction of classification schemes for vegetation

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:37 ,  Issue: 5 )