By Topic

Retrieval of atmospheric liquid and ice characteristics using dual-wavelength radar observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vivekanandan, J. ; Nat. Center for Atmos. Res., Boulder, CO, USA ; Martner, B.E. ; Politovich, M.K. ; Guifu Zhang

Dual-wavelength (Kα- and X-band) radar measurements have shown promise in estimating the amount of liquid water in a cloud. By taking advantage of the attenuation by liquid water of the Kα-band signal as compared to X-band, the range-differentiated difference in reflectivity can be used to estimate the spatial distribution of cloud liquid water. One limitation is that the method is based on the assumption that all particles in the radar beams act as Rayleigh scatterers, that is, their diameters are small compared to the radar wavelengths. In natural clouds in wintertime conditions, this often may not be the case. This paper presents simulations of the response of these two wavelengths to conditions measured in several geographic locations. The simulations are used to build simplified relations between radar reflectivity and total mass and size distribution functions of liquid droplets and ice particles. Using these relations, it may be possible to estimate the sizes of the droplets, as well as total mass contents and size distributions of ice particles that may also be present in the sampled volume. Results of radar-based retrieval methods applied to measurements in a winter stratiform cloud are discussed, and compared with a previous result. A technique is described for detecting regions of non-Rayleigh scattering and for subsequently estimating liquid water content (LWC). Additional examples of dual-wavelength measurements in regions containing cloud droplets, small ice particles, and larger snowflakes are discussed

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 5 )