By Topic

Unsupervised classification using polarimetric decomposition and the complex Wishart classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jong-Sen Lee ; Div. of Remote Sensing, Naval Res. Lab., Washington, DC, USA ; Grunes, M.R. ; Ainsworth, T.L. ; Li-Jen Du
more authors

The authors propose a new method for unsupervised classification of terrain types and man-made objects using polarimetric synthetic aperture radar (SAR) data. This technique is a combination of the unsupervised classification based on polarimetric target decomposition, S.R. Cloude et al. (1997), and the maximum likelihood classifier based on the complex Wishart distribution for the polarimetric covariance matrix, J.S. Lee et al. (1994). The authors use Cloude and Pottier's method to initially classify the polarimetric SAR image. The initial classification map defines training sets for classification based on the Wishart distribution. The classified results are then used to define training sets for the next iteration. Significant improvement has been observed in iteration. The iteration ends when the number of pixels switching classes becomes smaller than a predetermined number or when other criteria are met. The authors observed that the class centers in the entropy-alpha plane are shifted by each iteration. The final class centers in the entropy-alpha plane are useful for class identification by the scattering mechanism associated with each zone. The advantages of this method are the automated classification, and the interpretation of each class based on scattering mechanism. The effectiveness of this algorithm is demonstrated using a JPL/AIRSAR polarimetric SAR image

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 5 )