Cart (Loading....) | Create Account
Close category search window

Efficient and accurate calculation of radar cross section of curved objects by using the conformal finite difference time domain scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dey, S. ; Electromagn. Commun. Res. Lab., University Park, PA, USA ; Mittra, R. ; Pegg, N.

In this paper we present the test and validation results for the RCS of spherical objects derived by using conformal finite difference time domain (CFDTD) technique, which was introduced for obviating the staircasing errors introduced by the conventional finite difference time domain (FDTD) approach when dealing with curved bodies. We demonstrate that the CFDTD results show significant improvement in accuracy over those derived by using the conventional FDTD that employs a staircasing of the sphere geometry.

Published in:

Antennas and Propagation Society International Symposium, 1999. IEEE  (Volume:4 )

Date of Conference:

11-16 July 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.