By Topic

Multiple description image coding using signal decomposition and reconstruction based on lapped orthogonal transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Doo-Man Chung ; Dept. of Electr. Eng., Polytech.. Univ., Brooklyn, NY, USA ; Yao Wang

This paper considers the use of multiple description coding (MDC) for image transmission in communication systems where long burst errors and sometimes complete channel failures are inevitable. A general framework for MDC is proposed, which uses nonhierarchical signal decomposition at the encoder and image reconstruction at the decoder. A realization of this framework using lapped orthogonal transforms (LOTs) is developed. In the encoder, the bitstream generated by a conventional LOT-based image coder is decomposed so that each description consists of a subsampled set of the coded LOT coefficient blocks. In the decoder, instead of using the inverse LOT directly, a novel image reconstruction technique is employed, which makes use of the constraints between adjacent LOT coefficient blocks and the smoothness property of common image signals. To guarantee a satisfactory reconstruction quality, the transform should introduce a desired amount of correlation among adjacent LOT coefficient blocks. The tradeoff between coding efficiency and reconstruction quality obtainable by using different LOT bases is investigated

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:9 ,  Issue: 6 )