By Topic

Empirical study of particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuhui Shi ; EDS Indianapolis Technol. Center, Carmel, IN, USA ; Eberhart, R.C.

We empirically study the performance of the particle swarm optimizer (PSO). Four different benchmark functions with asymmetric initial range settings are selected as testing functions. The experimental results illustrate the advantages and disadvantages of the PSO. Under all the testing cases, the PSO always converges very quickly towards the optimal positions but may slow its convergence speed when it is near a minimum. Nevertheless, the experimental results show that the PSO is a promising optimization method and a new approach is suggested to improve PSO's performance near the optima, such as using an adaptive inertia weight

Published in:

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on  (Volume:3 )

Date of Conference: