By Topic

Using cultural algorithms to improve performance in semantic networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rychtyckyi, N. ; Manuf. Quality & Bus. Syst., Ford Motor Co., Dearborn, MI, USA ; Reynolds, R.G.

Evolutionary computation has been successfully applied in a variety of problem domains and applications. We describe the use of a specific form of evolutionary computation known as cultural algorithms to improve the efficiency of the subsumption algorithm in semantic networks. Subsumption is the process that determines if one node in the network is a child of another node. As such, it is utilized as part of the node classification algorithm within semantic network based applications, One method of improving subsumption efficiency is to reduce the number of attributes that need to be compared for every node without impacting the results. We suggest that a cultural algorithm approach can be used to identify these defining attributes that are most significant for node retrieval. These results can then be utilized within an existing vehicle assembly process planning application that utilizes a semantic network based knowledge base to improve the performance and reduce complexity of the network

Published in:

Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on  (Volume:3 )

Date of Conference: