By Topic

Time-series classification using mixed-state dynamic Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. Pavlovic ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; B. J. Frey ; T. S. Huang

We present a novel mixed-state dynamic Bayesian network (DBN) framework for modeling and classifying time-series data such as object trajectories. A hidden Markov model (HMM) of discrete actions is coupled with a linear dynamical system (LDS) model of continuous trajectory motion. This combination allows us to model both the discrete and continuous causes of trajectories such as human gestures. The model is derived using a rich theoretical corpus from the Bayesian network literature. This allows us to use an approximate structured variational inference technique to solve the otherwise intractable inference of action and system states. Using the same DBN framework we show how to learn the mixed-state model parameters from data. Experiments show that with high statistical confidence the mixed-state DBNs perform favorably when compared to decoupled HMM/LDS models on the task of recognizing human gestures made with a computer mouse

Published in:

Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.  (Volume:2 )

Date of Conference: