By Topic

Automatic hierarchical classification using time-based co-occurrences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Stauffer, Chris ; Artificial Intelligence Lab., MIT, Cambridge, MA, USA

While a tracking system is unaware of the identity of any object it tracks, the identity remains the same for the entire tracking sequence. Our system leverages this information by using accumulated joint cooccurrences of the representations within the sequence to create a hierarchical binary-tree classifier of the representations. This classifier is useful to classify sequences as well as individual instances. We illustrate the use of this method on two separate representations the tracked object's position, movement, and size; and the tracked object's binary motion silhouettes

Published in:

Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.  (Volume:2 )

Date of Conference:

1999