Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Image segmentation and labeling using the Polya urn model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banerjee, A. ; Center for Autom. Res., Maryland Univ., College Park, MD, USA ; Burlina, P. ; Alajaji, F.

We propose a segmentation method based on Polya's (1931) urn model for contagious phenomena. A preliminary segmentation yields the initial composition of an urn representing the pixel. The resulting urns are then subjected to a modified urn sampling scheme mimicking the development of an infection to yield a segmentation of the image into homogeneous regions. This process is implemented using contagion urn processes and generalizes Polya's scheme by allowing spatial interactions. The composition of the urns is iteratively updated by assuming a spatial Markovian relationship between neighboring pixel labels. The asymptotic behavior of this process is examined and comparisons with simulated annealing and relaxation labeling are presented. Examples of the application of this scheme to the segmentation of synthetic texture images, ultra-wideband synthetic aperture radar (UWB SAR) images and magnetic resonance images (MRI) are provided

Published in:

Image Processing, IEEE Transactions on  (Volume:8 ,  Issue: 9 )