By Topic

A learning-based prediction-and-verification segmentation scheme for hand sign image sequence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cui, Y. ; VR Telecom, Wexford, PA, USA ; Weng, J.

We present a prediction-and-verification segmentation scheme using attention images from multiple fixations. A major advantage of this scheme is that it can handle a large number of different deformable objects presented in complex backgrounds. The scheme is also relatively efficient. The system was tested to segment hands in sequences of intensity images, where each sequence represents a hand sign in American Sign Language. The experimental result showed a 95 percent correct segmentation rate with a 3 percent false rejection rate

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 8 )