By Topic

Stratified self-calibration with the modulus constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pollefeys, M. ; VISICS-PSI-ESAT Group, Katholieke Univ., Leuven, Heverlee, Belgium ; Van Gool, L.

In computer vision and especially for 3D reconstruction, one of the key issues is the retrieval of the calibration parameters of the camera. These are needed to obtain metric information about the scene from the camera. Often these parameters are obtained through cumbersome calibration procedures. There is a way to avoid explicit calibration of the camera. Self-calibration is based on finding the set of calibration parameters which satisfy some constraints (e.g., constant calibration parameters). Several techniques have been proposed but it often proved difficult to reach a metric calibration at once. Therefore, in the paper, a stratified approach is proposed, which goes from projective through affine to metric. The key concept to achieve this is the modulus constraint. It allows retrieval of the affine calibration for constant intrinsic parameters. It is also suited for use in conjunction with scene knowledge. In addition, if the affine calibration is known, it can also be used to cope with a changing focal length

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 8 )