By Topic

A new technique for hot carrier reliability evaluations of flash memory cell after long-term program/erase cycles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chung, S.S. ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Cherng-Ming Yih ; Shui-Ming Cheng ; Mong-Song Liang

In this paper, we provide a methodology to evaluate the hot-carrier-induced reliability of flash memory cells after long-term program/erase cycles. First, the gated-diode measurement technique has been employed for determining the lateral distributions of interface state (Nit) and oxide trap charges (Qox) under both channel-hot electron (CHE) programming bias and source-side erase-bias stress conditions. A gate current model was then developed by including both the effects of Nit and Qox. Degradation of flash memory cell after P/E cycles due to the above oxide damage was studied by monitoring the gate current. For the cells during programming, the oxide damage near the drain will result in a programming time delay and we found that the interface state generation is the dominant mechanism. Furthermore, for the cells after long-term erase using source-side FN erase, the oxide trap charge will dominate the cell performance such as read disturb. In order to reduce the read-disturb, source bias should be kept as low as possible since the larger the applied source erasing bias, the worse the device reliability becomes

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 9 )