By Topic

Robust text-independent speaker identification over telephone channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. A. Murthy ; Speech Technol. & Res. Lab., SRI Int., Menlo Park, CA, USA ; F. Beaufays ; L. P. Heck ; M. Weintraub

This paper addresses the issue of closed-set text-independent speaker identification from samples of speech recorded over the telephone. It focuses on the effects of acoustic mismatches between training and testing data, and concentrates on two approaches: (1) extracting features that are robust against channel variations and (2) transforming the speaker models to compensate for channel effects. First, an experimental study shows that optimizing the front end processing of the speech signal can significantly improve speaker recognition performance. A new filterbank design is introduced to improve the robustness of the speech spectrum computation in the front-end unit. Next, a new feature based on spectral slopes is described. Its ability to discriminate between speakers is shown to be superior to that of the traditional cepstrum. This feature can be used alone or combined with the cepstrum. The second part of the paper presents two model transformation methods that further reduce channel effects. These methods make use of a locally collected stereo database to estimate a speaker-independent variance transformation for each speech feature used by the classifier. The transformations constructed on this stereo database can then be applied to speaker models derived from other databases. Combined, the methods developed in this paper resulted in a 38% relative improvement on the closed-set 30-s training 5-s testing condition of the NIST'95 Evaluation task, after cepstral mean removal

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:7 ,  Issue: 5 )