Cart (Loading....) | Create Account
Close category search window

The design of a SRAM-based field-programmable gate array-Part II: Circuit design and layout

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chow, P. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Soon Ong Seo ; Rose, J. ; Chung, K.
more authors

For Pt.I see ibid., vol.7, pp.191-7 (1999). Field-programmable gate arrays (FPGA's) are now widely used for the implementation of digital systems, and many commercial architectures are available. Although the literature and data books contain detailed descriptions of these architectures, there is very little information on how the high-level architecture was chosen and no information on the circuit-level or physical design of the devices. In Part I of this paper, we described the high-level architectural design of a static random-access memory programmable FPGA. This paper will address the circuit-design issues through to the physical layout. We address area-speed tradeoffs in the design of the logic block circuits and in the connections between the logic and the routing structure. All commercial FPGA designs are done using full-custom hand layout to obtain absolute minimum die sizes. This is both labor and time intensive. We propose a design style with a minitile that contains a portion of all the components in the logic tile, resulting in less full-custom effort. The minitile is replicated in a 4/spl times/4 array to create a macro tile. The minitile is optimized for layout density and speed, and is customized in the array by adding appropriate vias. This technique also permits easy changing of the hard-wired connections in the logic block architecture and the segmentation length distribution in the routing architecture.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:7 ,  Issue: 3 )

Date of Publication:

Sept. 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.