By Topic

Robust statistical feature based aircraft identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. A. Mitchell ; Qualia Comput. Inc., Beavercreek, OH, USA ; J. J. Westerkamp

The statistical feature based (StaF) classifier is presented for robust high range resolution (HRR) radar aircraft identification (ID). HRR signature peak features are selected “on the fly” with no a priori assumptions about the number or location of the features. Features extracted depends on the information content of the observed signature making the number, location, and amplitude of features random variables. A primary goal for this research is to increase classifier robustness by maintaining high known target ID while minimizing unknown target errors. Results are presented demonstrating that the StaF classifier can significantly reduce errors associated with unknown targets while maintaining a high probability of correct classification

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:35 ,  Issue: 3 )