By Topic

Comparison of SDINS in-flight alignment using equivalent error models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Myeong-Jong Yu ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Jang Gyu Lee ; Heung-Won Park

The psi-angle model and the equivalent tilt (ET) model have been widely used for in-flight alignment (IFA) to align and to calibrate a strapdown inertial navigation system (SDINS) on a moving base. However, these models are not effective for a system with large attitude errors because the neglected error terms in the models degrade the performance of a designed filter. In this paper, with an odometer as an external aid, a velocity-aided SDINS is designed for IFA. Equivalent error models applicable to IFA with large attitude errors are derived in terms of rotation vector error and additive and multiplicative quaternion errors. It is found that error models in terms of additive quaternion error (AQE) become linear. Thus the proposed error models reduce unmodeled error terms for a linear filter. From a number of van tests, it is shown that the proposed error models effectively improve the performance of IFA

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:35 ,  Issue: 3 )