We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Time-varying autoregressive modeling of HRR radar signatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Eom, K.B. ; Dept. of Electr. Eng. & Comput. Sci., George Washington Univ., Washington, DC, USA

A time-varying autoregressive (TVAR) model is used for the modeling and classification of high range resolution (HRR) radar signatures. In this approach, the TVAR coefficients are expanded by a low-order discrete Fourier transform (DFT). A least-squares (LS) estimator of the TVAR model parameters is presented, and the maximum likelihood (ML) approach for determining the model order is also presented. The validity of the TVAR modeling approach is demonstrated by comparing with other approaches in estimating time-varying spectra of synthetic signals. The estimated TVAR model parameters are also used as features in classifying HRR radar signatures with a neural network. In the experiment with two sets of noncooperating target identification (NCTI) data, about 93% of samples are correctly classified

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:35 ,  Issue: 3 )