Cart (Loading....) | Create Account
Close category search window
 

UWB radar detection of targets in foliage using alpha-stable clutter models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kapoor, R. ; US Army Res. Lab., Adelph, MD, USA ; Banerjee, A. ; Tsihrintzis, G.A. ; Nandhakumar, N.

We address the problem of detection of targets obscured by a forest canopy using an ultrawideband (UWB) radar. The forest clutter observed in the radar imagery is a highly impulsive random process that is more accurately modeled with the recently proposed class of alpha-stable processes as compared with Gaussian, Weibull, and K-distribution models. With this more accurate model, segmentation is performed on the imagery into forest and clear regions. Further, a region-adaptive symmetric alpha stable (SαS) constant false-alarm rate (CFAR) detector is introduced and its performance is compared with the Weibull and Gaussian CFAR detectors. The results on real data show that the SαS CFAR performs better than the Weibull and Gaussian CFAR detectors in detecting obscured targets

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:35 ,  Issue: 3 )

Date of Publication:

Jul 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.