By Topic

Incoherent radar detection in compound-Gaussian clutter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Conte, Ernesto ; Dipt. di Ingegneria Elettronica, Naples Univ., Italy ; Lops, M. ; Ricci, G.

The detection of incoherent pulse trains in compound-Gaussian disturbance with known spectral density is dealt with here. Two alternative approaches are investigated, The first, assuming perfect knowledge of the signal fluctuation law and implementing the Neyman-Pearson test on the observed waveform, turns out to be not applicable to the radar problem. The second, instead, relying on the generalized likelihood ratio optimization strategy, leads to a canonical detector, whose structure is independent of the clutter amplitude probability density function. Interestingly, this detector turns out to be constant false-alarm rate in the sense that threshold setting does not require any knowledge as to the clutter distribution, Moreover, since such a processor is not implementable in real situations, we also present an FFT-based (fast Fourier transform) suboptimum structure. Finally, we give closed-form formulas for the detection performance of both receivers, showing that both of them largely outperform the square-law detector, especially in the presence of very spiky clutter

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:35 ,  Issue: 3 )