By Topic

Dynamics of arrays of inductively-coupled Josephson junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Warburton, P.A. ; Dept. of Electron. & Electr. Eng., King's Coll., London, UK ; Raman, N.

We present the results of our simulations of inductively-coupled overdamped Josephson junction arrays in a vanishingly small external magnetic field. With identical junctions we show that the junctions are always phase locked and that the output power is optimised when the loop inductance is minimised. For nonidentical junctions, however, the junctions may or may not be phase locked. We show that a high loop inductance increases the probability of phase locking, and that the average output power is maximised when the normalised loop inductance is equal to one. The addition of a load inductance external to the array does not affect the probability of phase locking.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:9 ,  Issue: 2 )