By Topic

Self-timed parallel adders based on DI RSFQ primitives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kameda, Y. ; Res. Center for Adv. Sci. & Technol., Tokyo Univ., Japan ; Polonsky, S.V. ; Maezawa, M. ; Nanya, T.

We present two versions of self-timed pipelined parallel carry-look-ahead adders. The adders are designed based on delay-insensitive (DI) rapid single-flux-quantum (RSFQ) primitives. Basic binary gates employ dual-rail encoded data, which include timing information in themselves. One version uses wave pipelining and the other delay-insensitive pipelining with a request-acknowledge data transfer protocol. We show simulation results of 4 to 32-bit adders and their sensitivity to delay variations. Two design schemes are compared in terms of area, speed, robustness, interface and design process for large systems.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:9 ,  Issue: 2 )