By Topic

Nd/sub 1.85/Ce/sub 0.15/CuO/sub 4-y/ bicrystal grain boundary Josephson junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Schoop, U. ; II. Phys. Inst., Koln Univ., Germany ; Kleefisch, S. ; Meyer, S. ; Marx, A.
more authors

The study of the detailed influence of the order parameter (OP) symmetry on the properties of high temperature superconducting (HTS) Josephson junctions still is a key issue. Whereas the hole doped HTS such as YBa/sub 2/Cu/sub 3/O/sub 7-/spl delta// (YBCO), Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8+x/ (BSCCO), or La/sub 1.85/Sr/sub 0.15/CuO/sub 4-/spl delta// (LSCO) are known to have a dominating d-wave component of the OP, there is significant evidence that the electron doped material Nd/sub 1.85/Ce/sub 0.15/CuO/sub 4-y/ (NCCO) has an s-wave symmetry of the OP. Therefore, we have studied the electrical transport properties of [001] tilt NCCO bicrystal grain boundary Josephson junctions (GBJs) with misorientation angles between 7/spl deg/ and 36.8/spl deg/ and compared them to those of the hole doped HTS. For the NCCO-GBJs an exponential decay of the critical current density J/sub c/ with increasing misorientation angle as well as a scaling of the characteristic junction voltage V/sub c//spl prop/J/sub c//sup p/ was found very similar to what is observed for the hole doped HTS. This strongly suggests that the OP symmetry is not the key parameter controlling the characteristic properties of HTS-GBJs. In contrast, they are most likely related to the presence of a disorder induced, insulating grain boundary barrier which is similar for both the d- and s-wave HTS.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:9 ,  Issue: 2 )