By Topic

Numerical analysis of stability margin and quench behavior of cable-in-conduit NbTi conductors for KSTAR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wang, Q.L. ; Korea Electrotechnol. Res. Inst., Changwon, South Korea ; Oh, S.S. ; Ryu, K.S. ; Yoon, C.S.
more authors

A numerical model has been proposed to analyze the stability margin and quench characteristics of the cable-in-conduit NbTi conductors for the KSTAR-PF (Korea Superconducting Tokamak Advanced Research) magnets. The dependence of the thermal, hydraulic and electrical properties on the external thermal disturbance was investigated. The algorithm of the program is based on the finite volume method which adopts space discretization and time integration by multi-step Runge-Kutta method to obtain stable numerical solutions. It was confirmed that the disturbance duration can influence the conductor stability and limiting current.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:9 ,  Issue: 2 )