By Topic

Preliminary study of a superconducting bulk magnet for the Maglev train

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fujimoto, H. ; Railway Tech. Res. Inst., Tokyo, Japan ; Kamijo, H. ; Higuchi, T. ; Nakamura, Y.
more authors

One of the prospective applications of high critical temperature superconductors is a superconducting magnet for the magnetically levitated (Maglev) train. Development shows that RE (rare earth) BaCuO and LRE (light rare-earth) BaCuO superconductors prepared by melt processes have a high critical current density at 77 K and high magnetic fields. LRE-Ba-Cu-O bulk superconductors melt-processed in a reduced oxygen atmosphere, named oxygen-controlled-melt-growth (OCMG) process, are very promising for high field application as a superconducting permanent magnet with liquid nitrogen refrigeration. Compared to good quality melt-grown REBaCuO bulks, LREBaCuO bulks exhibit larger critical current densities in high magnetic fields and much improved irreversibility field at 77 K, implying that more effective flux pinning can be realized in a commercially feasible way. In this study, we discuss the possibility of a superconducting bulk magnet for a Maglev train. A preliminary design of the bulk magnet and also melt processing for REBaCuO and LREBaCuO bulk superconductors and their characteristic superconducting properties are presented.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:9 ,  Issue: 2 )