By Topic

1.9 K test facility for the reception of the superconducting cables for the LHC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

A new test facility (FRESCA-Facility, reception of superconducting cables) is under construction at CERN to measure the electrical properties of the LHC superconducting cables. Its main features are: independently cooled background magnet, test currents up to 32 kA, temperature between 1.8 and 4.5 K, long measurement length of 60 cm, field perpendicular or parallel to the cable face, measurement of the current distribution between the strands. The facility consists of an outer cryostat containing a superconducting NbTi dipole magnet with a bore of 56 mm and a maximum operating field of 9.5 T. The magnet current is supplied by an external 16 kA power supply and fed into the cryostat using self-cooled leads. The lower bath of the cryostat, separated by means of a so called lambda-plate from the upper bath, can be cooled down to 1.9 K using a subcooled superfluid refrigeration system. Within the outer cryostat, an inner cryostat is installed containing the sample insert. This approach makes it possible to change samples while keeping the background magnet cold, and thus decreasing the helium consumption and cool-down time of the samples. The lower bath of the inner cryostat, containing the sample holder with two superconducting cable samples, can as well be cooled down to 1.9 K. The samples can be rotated while remaining at liquid helium temperature, enabling measurements with the background field perpendicular or parallel to the broad face of the cable. Several arrays of Hall probes are installed next to the samples in order to estimate possible current imbalances between the strands of the cables.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:9 ,  Issue: 2 )