By Topic

A modularized processor LSI with a highly parallel structure for continuous speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Takahashi, J. ; NTT LSI Lab., Kanagawa, Japan ; Hamaguchi, S. ; Tansho, K. ; Kimura, T.

A speech recognition processor CMOS LSI was developed as the processing element (PE) of a ring array processor previously proposed by the authors as architecture to carry out highly parallel recognition processing with array size flexibility. There are three key features for the LSI: (1) a highly parallel I/O structure of triple buffer with cyclical-mode transition control methods to solve the serious problem of inter-PE data transfer overhead versus the array processing; (2) a control structure with two direct memory access (DMA) controllers to realize inter-PE data I/O processing and intra-PE processing in parallel; and (3) a pipelined recognition processing at a high execution rate realized by a pipelined structure and a balanced clock distribution design technique. These effective designs for the PE LSI allow high-speed recognition processing without any inter-PE data transfer overhead in the ring array processor. Combining the PE-LSI architecture with the proposed array architecture for highly parallel dynamic time warping (DTW) processing, a real-time continuous speech recognition system based on continuous dynamic programming matching using the SPLIT method for a 1000-word vocabulary, can be constructed using a ring array processor consisting of 30 PEs

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:26 ,  Issue: 6 )