By Topic

Diagnostics and analysis of incident and vapor shield plasmas in PLADIS I, a coaxial deflagration gun for tokamak disruption simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. T. Bradley ; Los Alamos Nat. Lab., NM, USA ; J. M. Gahl ; P. D. Rockett

Tokamak disruption simulation experiments have been conducted at the University of New Mexico using the PLADIS I plasma gun system. Earlier work had characterized the plasma-surface interaction in terms of parameters such as incident energy from bucket calorimeter measurements and rough measurements of beam area from flat damage targets. A variety of new plasma diagnostics have been used to further investigate the characteristics of the incident plasma beam and vapor shield plasma in a simulated tokamak disruption. These diagnostics have included laser interferometry, two-color pyrometry, emission spectroscopy, and other methods to quantify the characteristics of the incident and vapor shield plasmas of a simulated tokamak disruption. The synthesis of different beam area measurement techniques is used to determine the radial structure of the plasma beam. Vacuum ultra violet spectroscopy is used to determine the thickness and internal structure of the vapor shield plasma. Results from two-color optical pyrometry and surface pressure measurements are used to determine the dynamics of vapor shield formation

Published in:

IEEE Transactions on Plasma Science  (Volume:27 ,  Issue: 4 )