By Topic

Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: statistical performance in the presence of additive gaussian noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Barkat ; Signal Process. Res. Centre, Queensland Univ. of Technol., Brisbane, Qld., Australia ; B. Boashash

The peak of the polynomial Wigner-Ville distribution (PWVD) has been previously proposed as an estimator of the instantaneous frequency (IF) for a monocomponent polynomial frequency modulated (FM) signal. In this paper, we evaluate the statistical performance of this estimator in the case of additive white Gaussian noise and provide an analytical expression for the variance. We show that for a given PWVD order, the estimator performance can be improved by a proper choice of the kernel coefficients in the PWVD. A performance comparison between the PWVD based IF estimator and another previously proposed one based on the high-order ambiguity function (HAF) is also provided, Simulation results show that for a signal-to-noise ratio larger than 3 dB, the proposed sixth-order PWVD outperforms the HAF in estimating the IF of a third- or fourth-order polynomial phase signal, evaluated at the central point of the observation interval

Published in:

IEEE Transactions on Signal Processing  (Volume:47 ,  Issue: 9 )