By Topic

Nonbinary quantum codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
E. M. Rains ; AT&T Res., Florham Park, NJ, USA

We present several results on quantum codes over general alphabets (that is, in which the fundamental units may have more than two states). In particular, we consider codes derived from finite symplectic geometry assumed to have additional global symmetries. From this standpoint, the analogs of Calderbank-Shor-Steane codes and of GF(4)-linear codes turn out to be special cases of the same construction. This allows us to construct families of quantum codes from certain codes over number fields; in particular, we get analogs of quadratic residue codes, including a single-error-correcting code encoding one letter in five, for any alphabet size. We also consider the problem of fault-tolerant computation through such codes, generalizing ideas of Gottesman (see Phys. Rev. A, vol.57, no.1, p127-37, 1998)

Published in:

IEEE Transactions on Information Theory  (Volume:45 ,  Issue: 6 )