By Topic

Constraint-based, multidimensional data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiawei Han ; Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; L. V. S. Lakshmanan ; R. T. Ng

Although many data-mining methodologies and systems have been developed in recent years, the authors contend that by and large, present mining models lack human involvement, particularly in the form of guidance and user control. They believe that data mining is most effective when the computer does what it does best-like searching large databases or counting-and users do what they do best, like specifying the current mining session's focus. This division of labor is best achieved through constraint-based mining, in which the user provides restraints that guide a search. Mining can also be improved by employing a multidimensional, hierarchical view of the data. Current data warehouse systems have provided a fertile ground for systematic development of this multidimensional mining. Together, constraint-based and multidimensional techniques can provide a more ad hoc, query-driven process that effectively exploits the semantics of data than those supported by current standalone data-mining systems

Published in:

Computer  (Volume:32 ,  Issue: 8 )