By Topic

Mining very large databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. Ganti ; Dept. of Comput. Sci., Wisconsin Univ., Madison, WI, USA ; J. Gehrke ; R. Ramakrishnan

Established companies have had decades to accumulate masses of data about their customers, suppliers, products and services, and employees. Data mining, also known as knowledge discovery in databases, gives organizations the tools to sift through these vast data stores to find the trends, patterns, and correlations that can guide strategic decision making. Traditionally, algorithms for data analysis assume that the input data contains relatively few records. Current databases however, are much too large to be held in main memory. To be efficient, the data mining techniques applied to very large databases must be highly scalable. An algorithm is said to be scalable if (given a fixed amount of main memory), its runtime increases linearly with the number of records in the input database. Recent work has focused on scaling data mining algorithms to very large data sets. The authors describe a broad range of algorithms that address three classical data mining problems: market basket analysis, clustering, and classification

Published in:

Computer  (Volume:32 ,  Issue: 8 )