By Topic

Data mining: from serendipity to science

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramakrishnan, N. ; Dept. of Comput. Sci., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Grama, Ananth Y.

The idea of unsupervised learning from basic facts (axioms) or from data has fascinated researchers for decades. Knowledge discovery engines try to extract general inferences from facts or training data. Statistical methods take a more structured approach, attempting to quantify data by known and intuitively understood models. The problem of gleaning knowledge from existing data sources poses a significant paradigm shift from these traditional approaches. The size, noise, diversity, dimensionality, and distributed nature of typical data sets make even formal problem specification difficult. Moreover, you typically do not have control over data generation. This lack of control opens up a Pandora's box filled with issues such as overfitting, limited coverage, and missing/incorrect data with high dimensionality. Once specified, solution techniques must deal with complexity, scalability (to meaningful data sizes), and presentation. This entire process is where data mining makes its transition from serendipity to science

Published in:

Computer  (Volume:32 ,  Issue: 8 )