By Topic

Dynamic power management based on continuous-time Markov decision processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qinru Qiu ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; M. Pedram

This paper introduces a continuous-time, controllable Markov process model of a power-managed system. The system model is composed of the corresponding stochastic models of the service queue and the service provider. The system environment is modeled by a stochastic service request process. The problem of dynamic power management in such a system is formulated as a policy optimization problem and solved using an efficient “policy iteration” algorithm. Compared to previous work on dynamic power management, our formulation allows better modeling of the various system components, the power-managed system as a whole, and its environment. In addition it captures dependencies between the service queue and service provider status. Finally, the resulting power management policy is asynchronous, hence it is more power-efficient and more useful in practice. Experimental results demonstrate the effectiveness of our policy optimization algorithm compared to a number of heuristic (time-out and N-policy) algorithms

Published in:

Design Automation Conference, 1999. Proceedings. 36th

Date of Conference:

1999