Cart (Loading....) | Create Account
Close category search window
 

ENOR: model order reduction of RLC circuits using nodal equations for efficient factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sheehan, B.N. ; Mentor Graphics Corp., Wilsonville, OR, USA

ENOR is an innovative way to produce provably-passive, reciprocal, and compact representations of RLC circuits. Beginning with the nodal equations, ENOR formulates recurrence relations for the moments that involve factorizing a symmetric, positive definite matrix; this contrasts with other RLC order reduction algorithms that require expensive LU factorization. It handles floating capacitors, inductor loops, and resistor links in a uniform way. It distinguishes between active and passive ports, does Gram-Schmidt orthogonalization on the fly, controls error in the time-domain. ENOR is a superbly simple, flexible, and well-conditioned algorithm for lightning reduction of mega-sized RLC trees, meshes, and coupled interconnects-all with excellent accuracy

Published in:

Design Automation Conference, 1999. Proceedings. 36th

Date of Conference:

1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.