By Topic

Fast synthetic vision, memory, and learning models for virtual humans

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuffner, J.J., Jr. ; Comput. Sci. Robotics Lab., Stanford Univ., CA, USA ; Latombe, J.-C.

The paper presents a simple and efficient method of modeling synthetic vision, memory, and learning for autonomous animated characters in real time virtual environments. The model is efficient in terms of both storage requirements and update times, and can be flexibly combined with a variety of higher level reasoning modules or complex memory rules. The design is inspired by research in motion planning, control, and sensing for autonomous mobile robots. We apply this framework to the problem of quickly synthesizing from navigation goals the collision-free motions for animated human figures in changing virtual environments. We combine a low level path planner, a path following controller and cyclic motion capture data to generate the underlying animation. Graphics rendering hardware is used to simulate the visual perception of a character, providing a feedback loop to the overall navigation strategy. The synthetic vision and memory update rules can handle dynamic environments where objects appear, disappear, or move around unpredictably. The resulting model is suitable for a variety of real time applications involving autonomous animated characters

Published in:

Computer Animation, 1999. Proceedings

Date of Conference: