Cart (Loading....) | Create Account
Close category search window

Parallel algorithms for force directed scheduling of flattened and hierarchical signal flow graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Prabhakaran, P. ; Compaq Comput. Corp., Shrewbury, MA, USA ; Banerjee, P.

In this paper, we present some novel algorithms for scheduling hierarchical signal flow graphs in the domain of high-level synthesis. With complex chips that need to be designed in the future, it is expected that the runtimes of these scheduling algorithms will be quite large. The key contributions of this paper are as follows: First, we develop a novel extension of the sequential force-directed scheduling algorithm which naturally handles loops and conditionals by coming up with a scheme of scheduling hierarchical signal flow graphs. Second, we develop three new parallel algorithms for the scheduling problem. Our parallel algorithms are portable across a wide range of parallel platforms. We report results on a set of high-level synthesis benchmarks on 8-processor SGI Origin and a 64 processor IBM SP-2. While some parallel algorithms for VLSI CAD reported by earlier researchers have reported a loss of qualities of results, our parallel algorithms produce exactly the same results as the sequential algorithms on which they are based

Published in:

Computers, IEEE Transactions on  (Volume:48 ,  Issue: 7 )

Date of Publication:

Jul 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.