By Topic

Functional yield enhancement and statistical design of a low power transconductor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tarim, T.B. ; Dept. of Electron. Eng., Ohio State Univ., Columbus, OH, USA ; Ismail, M.

The functional yield is becoming increasingly critical in VLSI design. As feature sizes move into the deep submicron ranges and power supply voltages are reduced, the effect of both device mismatch and inter-die process variations on the performance and reliability of analog integrated circuits is magnified. The statistical MOS (SMOS) model accounts for both inter-die and intra-die variations. A new transconductor, statistically robust with good yield is discussed in this paper. The circuit operates in the saturation region with fully balanced input signals. Initial circuit simulation results have been given. Response Surface Methodology (RSM) and Design of Experiment (DOE) techniques were used as statistical VLSI design tools combined with the SMOS model. Device size optimization and yield enhancement have been demonstrated

Published in:

Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Symposium on  (Volume:2 )

Date of Conference:

Jul 1999