Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Improving differential detection of MDPSK by nonlinear noise prediction and sequence estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schober, R. ; Inst. fur Telecommun., Erlangen-Nurnberg Univ., Germany ; Gerstacker, W.H. ; Huber, J.B.

A new technique is proposed to improve the performance of differential detection (DD) of M-ary differential phase-shift keying (MDPSK) significantly, applying sequence estimation. In order to obtain an appropriate representation of the received signal, a nonlinear time-variant finite impulse response or infinite impulse response prediction-error filter is used. For both filter structures the optimum coefficients are derived, assuming transmission over an additive white Gaussian noise (AWGN) channel. Delayed decision-feedback sequence estimation (DDFSE) is employed to estimate the transmitted symbol sequence. It is shown by simulations that even for decision-feedback equalization, which is a simple special case of DDFSE, a significant performance improvement of conventional DD under AWGN conditions results. In contrast to other noncoherent low-complexity receivers proposed in literature, this receiver is very robust under flat fading (Rayleigh and Ricean) conditions

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 8 )