By Topic

Orthogonal-transformed variable-gain least mean squares (OVLMS) algorithm for fractional tap-spaced adaptive MLSE equalizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Denno, S. ; NTT Wireless Syst. Labs., Kanagawa, Japan ; Saito, Y.

A fast channel-estimation scheme for adaptive maximum-likelihood sequence-estimation (MLSE) equalizers called the orthogonal-transformed variable-gain least mean squares (OVLMS) algorithm is proposed. This algorithm requires only as many operations as the least mean squares algorithm in spite of its excellent performance. Furthermore, an operational complexity reduction method is proposed in which the orthogonal matrix is reconfigured as eigenvectors with valid eigenvalues. The OVLMS algorithm is theoretically analyzed and is shown to have both a fast acquisition and a good tracking performance. An equalizer using OVLMS (OVLMS-MLSE) experimentally attains a 5-dB improvement in bit-error rate (BER) performance at BER of 1.0×10 -4 over coherent detection. The OVLMS-MLSE is found to be free of the degradation caused by sampling phase error. Finally, the OVLMS-MLSE equalizer is experimentally verified to synchronize within five symbols

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 8 )