By Topic

Push-pull circuits using n-p-n and p-n-p InP-based HBT's for power amplification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sawdai, Donald ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Pavlidis, D.

P-n-p heterojunction bipolar transistors (HBTs) have been combined with n-p-n HBTs in a push-pull amplifier in order to obtain improved linearity characteristics. Simulations of common-collector push-pull amplifiers demonstrate an improvement of 14 dB in second harmonic content at the onset of power saturation under class-B operation. Further improvement of 14 dB in the third harmonic content is shown by moving to class-AB operation at an expense of 4% decreased efficiency. A common-emitter push-pull amplifier was fabricated using both n-p-n and p-n-p HBTs with external matching and couplers. Testing of the circuit under class-AB conditions showed better third-order intermodulation (by ~9 dBc) and smaller second harmonic content (by ~11 dBc) compared with n-p-n HBTs alone. While the second harmonics were shown to combine destructively in the push-pull amplifier, total cancellation of the second harmonic was prevented by the wide difference in linearity characteristics of the n-p-n and p-n-p HBTs. In addition, the circuit produced over 2 dBm more output power than the n-p n HBT alone at 1 dB of gain compression

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:47 ,  Issue: 8 )