By Topic

The subband modulation: a joint power and rate allocation framework for subband image and video transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haitao Zheng ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Liu, K.J.R.

A new approach of reliable image and video transmission over noisy channels is proposed. For subband decomposed image and video, combined source coding and channel modulation design can achieve high compression efficiency and preferable quality. Further performance gain is obtained by multiresolution modulation as well as a bit remapping scheme that assigns efficient mapping from each source codeword to channel modulation points. We show that the combined source coding and modulation design outperforms conventional approaches, which design source coding and modulation separately. A simple channel distortion approximation is derived by applying a bit-remapping scheme, which allows the power allocation to be employed to further enhance the performance. Compared to the joint source and channel coding with a binary phase shift keying modulation system and fixed modulation with the one-to-one intelligent mapping system, the proposed system performs better in a middle-range signal-to-noise ratio and low channel bandwidth. The simulation is carried out on additive white Gaussian noise channels

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:9 ,  Issue: 5 )