By Topic

Frame interpolation and bidirectional prediction of video using compactly encoded optical-flow fields and label fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Krishnamurthy ; Rensselaer Polytech. Inst., Troy, NY, USA ; J. W. Woods ; P. Moulin

We consider the problems of motion-compensated frame interpolation (MCFI) and bidirectional prediction in a video coding environment. These applications generally require good motion estimates at the decoder. We use a multiscale optical-flow-based motion estimator that provides smooth, natural motion fields under bit-rate constraints. These motion estimates scale well with change in temporal resolution and provide considerable flexibility in the design and operation of coders and decoders. In the MCFI application, this estimator provides excellent interpolated frames that are superior to those of conventional motion estimators, both visually and in terms of peak signal-to-noise ratio (PSNR). We also consider the effect of occlusions in the bidirectional prediction application and introduce a dense label field that complements our motion estimator. This label field enables us to adaptively weight the forward and backward predictions and gives us substantial visual and PSNR improvements in the covered/uncovered regions of the sequence

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:9 ,  Issue: 5 )