By Topic

Quality-of-service in ad hoc carrier sense multiple access wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sobrinho, J.L. ; Inst. de Telecomunicacoes, Lisbon, Portugal ; Krishnakumar, A.S.

Carrier sense multiple access (CSMA) is one of the most pervasive medium access control (MAC) schemes in ad hoc, wireless networks. However, CSMA and its current variants do not provide quality-of-service (QoS) guarantees for real-time traffic support. This paper presents and studies black-burst (BB) contention, which is a distributed MAC scheme that provides QoS real-time access to ad hoc CSMA wireless networks. With this scheme, real-time nodes contend for access to the channel with pulses of energy-so called BBs-the durations of which are a function of the delay incurred by the nodes until the channel became idle. It is shown that real-time packets are not subject to collisions and that they have access priority over data packets. When operated in an ad hoc wireless LAN, BB contention further guarantees bounded and typically very small real-time delays. The performance of the network can approach that attained under ideal time division multiplexing (TDM) via a distributed algorithm that groups real-time packet transmissions into chains. A general analysis of BB contention is given, contemplating several modes of operation. The analysis provides conditions for the scheme to be stable. Its results are complemented with simulations that evaluate the performance of an ad hoc wireless LAN with a mixed population of data and real-time nodes

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:17 ,  Issue: 8 )