By Topic

On scheduling all-to-all personalized connection and cost-effective designs in WDM rings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xijun Zhang ; Dept. of Comput. Sci. & Eng., State Univ. of New York, Buffalo, NY, USA ; Chunming Qiao

We consider the problem of scheduling all-to-all personalized connections (AAPC) in WDM rings. Scheduling one connection for every source-destination pair in a network of limited connectivity provides a way to reduce routing control and guarantee throughput. For a given number of wavelengths K and a given number of transceivers per node T, we first determine the lower bound (LB) on the schedule length, which depends on both K and T. To achieve the LB, either the network bandwidth, the I/O capacity, or both should be fully utilized. This approach first constructs and then schedules circles, each of which is formed by up to four non-overlapping connections and can fully utilize the bandwidth of one wavelength. The proposed circle construction and scheduling algorithms can achieve the LB if K⩽T<N-1 or T=N-1, and closely approach or achieve the LB otherwise. In addition, we determine the appropriate values of T and K for the cost-effective designs in WDM rings through analysis of the schedule length and network throughput

Published in:

Networking, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 3 )