By Topic

Theoretical and experimental study of 10 Gb/s transmission performance using 1.55 μm LiNbO3-based transmitters with adjustable extinction ratio and chirp

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sung Kee Kim ; Dept. of Radio Eng., Korea Univ., Seoul, South Korea ; Mizuhara, O. ; Park, Y.K. ; Tzeng, L.D.
more authors

This paper has experimentally and theoretically investigated transmission performance depending on chirping and extinction ratio for a 10 Gb/s transmission system with the standard single-mode fiber. The transmission performance can be dramatically degraded or improved by adjusting chirp and extinction ratio in a 1.55 μm LiNbO3 modulator-based transmitter and erbium-doped fiber amplifier (EDFA)-pin diode receiver configuration. To estimate the transmission performance, bit error rate (BER) characteristics rather than eye-opening penalty (EOP) have been calculated by solving the nonlinear Schrodinger equation with including the model of chirping and extinction ratio for the transmitter, and noise and intersymbol interference for the receiver. This simulation can predict the measured BER characteristics well enough to see interplaying between chirping and extinction ratio

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 8 )