By Topic

All-optical four-fiber bidirectional line-switched ring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaojun Fang ; Sprint Advanced Technol. Labs., Burlingame, CA, USA ; Iraschko, R. ; Sharma, R.

An all-optical four-fiber bidirectional line-switched ring (O-4F/BLSR) architecture is proposed. This new physical layer networking protocol uses wavelengths as tributaries and an optical supervisory channel to carry overhead information. Optical channels can be added and dropped from the ring, and virtual wavelength paths can be provisioned. Both node and link failures of a network can be protected through a two layer protection scheme. Protection switching within the optical multiplex section layer (OMS) restores failure caused by loss of optical continuity in a way similar to the SONET 4F/BLSR line switching. Protection switching within the optical channel layer restores single channel failure using 1:N protection. Test results show that the O-4F/BLSR can restore traffic in less than 50 ms. A self-healing, bandwidth efficient, and scalable all-optical transport network evolving from this O-4F/BLSR architecture is possible

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 8 )