By Topic

VIENNA rectifier II-a novel single-stage high-frequency isolated three-phase PWM rectifier system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kolar, J.W. ; Dept. of Electr. Drives & Machines, Tech. Univ. Wien, Austria ; Drofenik, U. ; Zach, Franz C.

Based on an analysis of basic realization possibilities, the structure of the power circuit of a new single-stage three-phase boost-type pulsewidth modulated (PWM) rectifier system (VIENNA Rectifier II) is developed. This system has continuous sinusoidal time behavior of the input currents and high-frequency isolation of the output voltage, which is controlled in a highly dynamic manner. As compared to a conventional two-stage realization, this system has substantially lower complexity and allows the realization of several isolated output circuits with minimum effort. The basic function of the new PWM rectifier system is described based on the conduction states occurring within a pulse period. Furthermore, a straightforward space- vector-oriented method for the system control is proposed which guarantees a symmetric magnetization of the transformer. Also, it makes possible a sinusoidal control of the mains phase currents in phase with the associated phase voltages. By digital simulation, the theoretical considerations are verified and the stresses on the power semiconductors of the new converter system are determined. Finally, results of an experimental analysis of a 2.5-kW laboratory prototype of the system are given, and the direct startup and the short-circuit protection of the converter are discussed. Also, the advantages and disadvantages of the new converter system are compiled in the form of an overview

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:46 ,  Issue: 4 )