By Topic

Characterization of induction motors in adjustable-speed drives using a time-stepping coupled finite-element state-space method including experimental validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demerdash, N.A.O. ; Dept. of Electr. & Comput. Eng., Marquette Univ., Milwaukee, WI, USA ; Bangura, J.F.

This paper describes how a comprehensive time-stepping coupled finite element phase flux linkage-based state-space modeling approach can be used for the characterization of induction motors in adjustable-speed drives. The model implemented the faster indirect and iterative coupling approach based on the curl-curl nondiffusion equation rather than the direct coupling approach, which is based on the curl-curl diffusion equation. The model presented in this paper is capable of rigorously modeling the effects of magnetic nonlinearities and space harmonics due to the machine magnetic circuits' topology and winding layouts, time harmonics resulting from electronic switching of inverters, as well as the synergistic interaction between these time and space harmonics. This includes the presentation of a unique approach for the calculation of electromagnetic torque by means of a concept of energy balance computed from instantaneous magnetic field solutions calculated at each time sample in an at cycle. This approach reveals higher content of torque ripples than given by more conventional approaches to torque calculations. The results of motor drive performance simulations and corresponding test results are shown to correlate well here with current waveforms and torque averages. This includes sinusoidal excitation and six-switch inverter excitation with pulsewidth modulation switching pattern, respectively

Published in:

Industry Applications, IEEE Transactions on  (Volume:35 ,  Issue: 4 )